Faster learning of deep stacked autoencoders on multi-core systems using synchronized layer-wise pre-training
نویسندگان
چکیده
Deep neural networks are capable of modelling highly nonlinear functions by capturing different levels of abstraction of data hierarchically. While training deep networks, first the system is initialized near a good optimum by greedy layer-wise unsupervised pre-training. However, with burgeoning data and increasing dimensions of the architecture, the time complexity of this approach becomes enormous. Also, greedy pre-training of the layers often turns detrimental by over-training a layer causing it to lose harmony with the rest of the network. In this paper a synchronized parallel algorithm for pre-training deep networks on multi-core machines has been proposed. Different layers are trained by parallel threads running on different cores with regular synchronization. Thus the pre-training process becomes faster and chances of overtraining are reduced. This is experimentally validated using a stacked autoencoder for dimensionality reduction of MNIST handwritten digit database. The proposed algorithm achieved 26% speed-up compared to greedy layer-wise pre-training for achieving the same reconstruction accuracy substantiating its potential as an alternative.
منابع مشابه
Layer-wise learning of deep generative models
When using deep, multi-layered architectures to build generative models of data, it is difficult to train all layers at once. We propose a layer-wise training procedure admitting a performance guarantee compared to the global optimum. It is based on an optimistic proxy of future performance, the best latent marginal. We interpret autoencoders in this setting as generative models, by showing tha...
متن کاملHow to Train Your Deep Neural Network with Dictionary Learning
Currently there are two predominant ways to train deep neural networks. The first one uses restricted Boltzmann machine (RBM) and the second one autoencoders. RBMs are stacked in layers to form deep belief network (DBN); the final representation layer is attached to the target to complete the deep neural network. Autoencoders are nested one inside the other to form stacked autoencoders; once th...
متن کاملLayer-wise training of deep generative models
When using deep, multi-layered architectures to build generative models of data, it is difficult to train all layers at once. We propose a layer-wise training procedure admitting a performance guarantee compared to the global optimum. It is based on an optimistic proxy of future performance, the best latent marginal. We interpret autoencoders in this setting as generative models, by showing tha...
متن کاملUnderstanding Autoencoders with Information Theoretic Concepts
Despite their great success in practical applications, there is still a lack of theoretical and systematic methods to analyze deep neural networks. In this paper, we illustrate an advanced information theoretic methodology to understand the dynamics of learning and the design of autoencoders, a special type of deep learning architectures that resembles a communication channel. By generalizing t...
متن کاملStacked Autoencoders for the P300 Component Detection
Novel neural network training methods (commonly referred to as deep learning) have emerged in recent years. Using a combination of unsupervised pre-training and subsequent fine-tuning, deep neural networks have become one of the most reliable classification methods. Since deep neural networks are especially powerful for high-dimensional and non-linear feature vectors, electroencephalography (EE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1603.02836 شماره
صفحات -
تاریخ انتشار 2016